The conserved N-terminus of human rhinovirus capsid protein VP4 contains membrane pore-forming activity and is a target for neutralizing antibodies
نویسندگان
چکیده
Human rhinovirus is the causative agent of the common cold and belongs to the non-enveloped picornavirus family. A trigger such as receptor binding or low pH initiates conformational changes in the capsid that allow the virus to attach to membranes and form a pore for the translocation of viral RNA into the cytoplasm. We previously showed that recombinant capsid protein VP4 was able to form membrane pores. In this study, we show the N-terminus but not C-terminus of VP4 formed pores with properties similar to full-length VP4 and consistent with the size required for transfer of RNA. Sera against the N-terminus but not C-terminus of VP4 were shown to neutralize virus infectivity. Together, this suggests that the N-terminus of VP4 is responsible for membrane activity. This study contributes to an improved understanding of the mechanisms for involvement of VP4 in entry and its potential as an antiviral target.
منابع مشابه
Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization.
Development of a vaccine for the common cold has been thwarted by the fact that there are more than 100 serotypes of human rhinovirus (HRV). We previously demonstrated that the HRV14 capsid is dynamic and transiently displays the buried N termini of viral protein 1 (VP1) and VP4. Here, further evidence for this "breathing" phenomenon is presented, using antibodies to several peptides representi...
متن کاملCloning and Expression of Simian Rotavirus Spike Protein (VP4) in Insect Cells by Baculovirus Expression System
Background: VP4 protein is as spikes on rotavirus outer capsid shell which is responsible for virus attachment to the host. VP4 induces production of neutralizing antibodies which could be used for serotyping of different isolates. Methods: Simian rotavirus SA11 gene 4 cDNA was cloned into a cloning plasmid pDONRTM by recombination reaction using clonase II enzyme mix. The resulting clone was c...
متن کاملCapsid Protein VP4 of Human Rhinovirus Induces Membrane Permeability by the Formation of a Size-Selective Multimeric Pore
Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picor...
متن کاملCross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein
Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 ...
متن کاملRecombinant VP4 of human rhinovirus induces permeability in model membranes.
In common with all nonenveloped viruses, the mechanism of picornavirus membrane penetration during cell entry is poorly understood. The small, myristylated capsid protein VP4 has been implicated in this process. Here we show that recombinant VP4 of human rhinovirus 16 has the ability to associate with and induce membrane permeability in otherwise intact liposomes. This provides further evidence...
متن کامل